Qué es el big data y para qué sirve explicar

Inicio » Qué es el big data y para qué sirve explicar

big data investopedia

Los grandes datos se definen principalmente por el volumen de un conjunto de datos. Los conjuntos de big data suelen ser enormes, midiendo decenas de terabytes, y a veces cruzando el umbral de los petabytes. El término big data fue precedido por las bases de datos muy grandes (VLDB) que se gestionaban mediante sistemas de gestión de bases de datos (DBMS). En la actualidad, los big data se dividen en tres categorías de conjuntos de datos: estructurados, no estructurados y semiestructurados.

Los conjuntos de datos estructurados comprenden datos que pueden utilizarse en su forma original para obtener resultados. Algunos ejemplos son los datos relacionales, como los registros salariales de los empleados. La mayoría de los ordenadores y aplicaciones modernos están programados para generar datos estructurados en formatos preestablecidos para facilitar su procesamiento.

Los conjuntos de datos semiestructurados son una combinación de datos estructurados y no estructurados. Estos conjuntos de datos pueden tener una estructura adecuada y, sin embargo, carecen de elementos definitorios para su clasificación y procesamiento. Algunos ejemplos son los datos RFID y XML.

El procesamiento de big data requiere una configuración particular de máquinas físicas y virtuales para obtener resultados. El procesamiento se realiza de forma simultánea para obtener resultados lo más rápidamente posible. Hoy en día, las técnicas de procesamiento de big data también incluyen la computación en nube y la inteligencia artificial. Estas tecnologías ayudan a reducir las entradas manuales y la supervisión mediante la automatización de muchos procesos y tareas.

big data youtube

El tamaño y el número de conjuntos de datos disponibles han crecido rápidamente a medida que los datos son recogidos por dispositivos como los móviles, los baratos y numerosos dispositivos de detección de información del Internet de las cosas, los aéreos (teledetección), los registros de software, las cámaras, los micrófonos, los lectores de identificación por radiofrecuencia (RFID) y las redes de sensores inalámbricos. [8][9] La capacidad tecnológica per cápita del mundo para almacenar información se ha duplicado aproximadamente cada 40 meses desde la década de 1980;[10] en 2012 [actualización], cada día se generaban 2,5 exabytes (2,5×260 bytes) de datos[11] Según la predicción de un informe de IDC, se preveía que el volumen mundial de datos crecería exponencialmente de 4,4 zettabytes a 44 zettabytes entre 2013 y 2020. Para 2025, IDC predice que habrá 163 zettabytes de datos[12]. Una cuestión para las grandes empresas es determinar quién debe ser el propietario de las iniciativas de big data que afectan a toda la organización[13].

Los sistemas de gestión de bases de datos relacionales y los paquetes de software estadístico de escritorio utilizados para visualizar los datos suelen tener dificultades para procesar y analizar los big data. El procesamiento y análisis de big data puede requerir «software masivamente paralelo que se ejecuta en decenas, cientos o incluso miles de servidores»[14] Lo que se califica como «big data» varía en función de las capacidades de quienes lo analizan y de sus herramientas. Además, la ampliación de las capacidades hace de los big data un objetivo móvil. «Para algunas organizaciones, enfrentarse a cientos de gigabytes de datos por primera vez puede provocar la necesidad de reconsiderar las opciones de gestión de datos. Para otras, pueden ser necesarias decenas o cientos de terabytes antes de que el tamaño de los datos se convierta en una consideración significativa»[15].

ejemplos de big data

En pocas palabras, los big data son conjuntos de datos más grandes y complejos, especialmente los procedentes de nuevas fuentes de datos. Estos conjuntos de datos son tan voluminosos que el software de procesamiento de datos tradicional no puede gestionarlos. Sin embargo, estos volúmenes masivos de datos pueden utilizarse para resolver problemas empresariales que antes no habrían podido abordarse.

La velocidad es la rapidez con la que se reciben los datos y (quizás) se actúa sobre ellos. Normalmente, la mayor velocidad de los datos se transmite directamente a la memoria en lugar de escribirse en el disco. Algunos productos inteligentes con acceso a Internet operan en tiempo real o casi en tiempo real y requerirán una evaluación y acción en tiempo real.

La variedad se refiere a los muchos tipos de datos disponibles. Los tipos de datos tradicionales estaban estructurados y encajaban perfectamente en una base de datos relacional. Con el auge del big data, los datos se presentan en nuevos tipos de datos no estructurados. Los tipos de datos no estructurados y semiestructurados, como el texto, el audio y el vídeo, requieren un preprocesamiento adicional para derivar el significado y soportar los metadatos.

En los últimos años han surgido otras dos V: valor y veracidad. Los datos tienen un valor intrínseco. Pero no sirven de nada hasta que se descubre ese valor. Igualmente importante es saber hasta qué punto los datos son veraces y hasta qué punto se puede confiar en ellos.

cómo se utiliza el big data en la sanidad

En pocas palabras, los big data son conjuntos de datos más grandes y complejos, especialmente los procedentes de nuevas fuentes de datos. Estos conjuntos de datos son tan voluminosos que el software tradicional de procesamiento de datos no puede gestionarlos. Sin embargo, estos volúmenes masivos de datos pueden utilizarse para resolver problemas empresariales que antes no habrían podido abordarse.

La velocidad es la rapidez con la que se reciben los datos y (quizás) se actúa sobre ellos. Normalmente, la mayor velocidad de los datos se transmite directamente a la memoria en lugar de escribirse en el disco. Algunos productos inteligentes con acceso a Internet operan en tiempo real o casi en tiempo real y requerirán una evaluación y acción en tiempo real.

La variedad se refiere a los muchos tipos de datos disponibles. Los tipos de datos tradicionales estaban estructurados y encajaban perfectamente en una base de datos relacional. Con el auge del big data, los datos se presentan en nuevos tipos de datos no estructurados. Los tipos de datos no estructurados y semiestructurados, como el texto, el audio y el vídeo, requieren un preprocesamiento adicional para derivar el significado y soportar los metadatos.

En los últimos años han surgido otras dos V: valor y veracidad. Los datos tienen un valor intrínseco. Pero no sirven de nada hasta que se descubre ese valor. Igualmente importante es saber hasta qué punto los datos son veraces y hasta qué punto se puede confiar en ellos.

Leer más  Id de seguimiento analytics
Ir arriba
Esta web utiliza cookies propias y de terceros para su correcto funcionamiento y para fines analíticos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Ver
Privacidad