Edx big data
El programa 365 Data Science ha superado mis expectativas. Todos los cursos que he completado hasta la fecha han sido impartidos por instructores muy capacitados. Acabo de terminar el curso de Python. Estaba muy bien estructurado y…
Para un profesional ocupado como yo, normalmente no tengo tiempo para leer libros. 365 Data Science parece dedicar mucho tiempo a la elaboración de vídeos que puedan seguirse fácilmente… Los vídeos son cortos y concisos, pero muy informativos.
Acabo de terminar el primer curso del programa 365 Data Science. Debo decir que es un curso excelente con una gran visión y una infografía bien estructurada, que pone todos los conceptos de un vistazo. No puedo esperar a terminar otros cursos y módulos…
365 Data Science es realmente genial para aprender habilidades y conocimientos esenciales en todos los aspectos de la ciencia de datos. El tiempo de cada sesión es corto y puedes completarlo fácilmente, y seguir aprendiendo o resolviendo los ejercicios.
El mundo de la Ciencia de Datos es abrumador si eres un principiante total. Yo sólo tengo conocimientos medios-avanzados en Excel y el módulo de introducción a los datos y a la ciencia de datos es realmente genial. Explicado minuciosamente, de forma sencilla, y dándome…
Curso de ciencia de datos de Google
El análisis de big data examina grandes cantidades de datos para descubrir patrones ocultos, correlaciones y otros conocimientos. Con la tecnología actual, es posible analizar los datos y obtener respuestas de ellos casi inmediatamente, un esfuerzo que es más lento y menos eficiente con las soluciones de inteligencia empresarial más tradicionales.
El concepto de big data existe desde hace años; la mayoría de las organizaciones entienden ahora que si capturan todos los datos que llegan a sus empresas, pueden aplicar la analítica y obtener un valor significativo de ellos. Pero incluso en los años 50, décadas antes de que nadie pronunciara el término «big data», las empresas utilizaban la analítica básica (esencialmente números en una hoja de cálculo que se examinaban manualmente) para descubrir ideas y tendencias.
Sin embargo, las nuevas ventajas que aporta el análisis de big data son la velocidad y la eficiencia. Mientras que hace unos años una empresa reunía información, ejecutaba análisis y descubría información que podía utilizarse para tomar decisiones en el futuro, hoy esa empresa puede identificar ideas para tomar decisiones inmediatas. La capacidad de trabajar más rápido -y mantenerse ágil- da a las organizaciones una ventaja competitiva que no tenían antes.
Ensamblaje general de revisiones de ciencia de datos
Este curso es para aquellos que se inician en la ciencia de los datos. No se necesita experiencia previa en programación, aunque la capacidad de instalar aplicaciones y utilizar una máquina virtual es necesaria para completar las tareas prácticas.
(A) Procesador de cuatro núcleos (se recomienda que sea compatible con VT-x o AMD-V), de 64 bits; (B) 8 GB de RAM; (C) 20 GB de disco libre. Cómo encontrar la información de su hardware: (Windows): Abra Sistema haciendo clic en el botón Inicio, haciendo clic con el botón derecho del ratón en Equipo y luego en Propiedades; (Mac): Abra Visión general haciendo clic en el menú Apple y en «Acerca de este Mac». La mayoría de los ordenadores con 8 GB de RAM adquiridos en los últimos 3 años cumplirán los requisitos mínimos.Necesitará una conexión a Internet de alta velocidad porque descargará archivos de hasta 4 Gb de tamaño.
Este curso es para aquellos que son nuevos en la ciencia de los datos. Se recomienda haber completado Intro to Big Data. No se necesita experiencia previa en programación, aunque la capacidad de instalar aplicaciones y utilizar una máquina virtual es necesaria para completar las tareas prácticas. Consulte los requisitos técnicos de la especialización para conocer las especificaciones completas de hardware y software.
Análisis de datos de la asamblea general
Los empresarios se están dando cuenta de que los empleados con capacidad para utilizar los datos y la analítica para resolver problemas empresariales son cada vez más valiosos, sea cual sea su formación o su posición en una organización.
En gran medida, esto se debe a la proliferación de infraestructuras y herramientas de autoservicio diseñadas para automatizar muchas de las tareas técnicas pero repetitivas relacionadas con la limpieza, preparación y análisis de datos. Esto significa que los trabajadores son cada vez más capaces de llevar a cabo operaciones complejas basadas en datos, como la modelización predictiva y la automatización, sin ensuciarse las manos codificando complejos algoritmos desde cero.
Sin embargo, alguien que comprenda los principios estará a menudo en mejor posición para utilizar estas herramientas de forma productiva que alguien que no las conozca. Así pues, si quieres mejorar tu currículum con conocimientos de análisis, lo mejor que puedes hacer es consultar algunos de estos cursos. Sin embargo, hay que tener en cuenta que, aunque puedes formarte con estos cursos sin gastar un céntimo, algunos de ellos cobran por la certificación cuando los terminas.